同类二次根式的定义_ 2次根式计算题
第1篇:八年级数学二次根式知识点
1.二次根式:
式子(≥0)叫做二次根式。
2.最简二次根式:
(1)最简二次根式的定义:①被开方数是整数,因式是整式;②被开方数中不含能开得尽方的数或因式;③分母中不含根式。
(2)最简二次根式必须同时满足下列条件:
①被开方数中不含开方开的尽的因数或因式;
②被开方数中不含分母;
③分母中不含根式。
3.同类二次根式(可合并根式):
几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式,即可以合并的两个根式。
4.二次根式的*质
(1)非负*:是一个非负数.
注意:此*质可作公式记住,后面根式运算中经常用到.
(2).注意:此*质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完全平方的形式:
(3)注意:①字母不一定是正数.
②能开得尽方的因式移到根号外时,必须用它的算术平方根代替.
③可移到根号内的因式,必须是非负因式,如果因式的值是负的,应把负号留在根号外.
(4)公式与的区别与联系:
①表示求一个数的平方的算术根,a的范围是一切实数.
②表示一个数的算术平方根的平方,a的范围是非负数.
③和的运算结果都是非负的.
第2篇:八年级数学下册《分式与二次根式》知识点
1分式与分式方程
11指数的扩充
12分式和分式的基本*质
设f,g是一元或多元多项式,g的次数高于零次,则称f,g之比f/g为分式
分式的基本*质分数的分子与分母都乘以或除以同一个不等于0的数,分数的值不变
13分式的约分和通分
分式的约分是将分子与分母的公因式约去,使分式化简
如果一个分式的分子与分母没有一次或一次以上的公因式,且各系数没有大于1的公约数,则此分式成为既约分式既约分式也就是最简分式
对于分母不相同的几个分式,将每个分式的分子与分母乘以适当的非零多项式,使各分式的分母相同,而各分式的值保持不变,这种运算叫做通分
14分式的运算
15分式方程
方程的两遍都是有理式,这样的方程成为有理方程如果有理方程中含有分式,则称为分式方程
2二次根式
21根式
在实数范围内,如果n个x相乘等于a,n是大于1的整数,则称x为a的n次方根
含有数字与变元的加,减,乘,除,乘方,开方运算,并一定含有变元开方运算的算式成为无理式
22最简二次根式与同类根式
具备下列条件的二次根式称为最简二次根式:(1)被开方式的每一个因式的指数都小于开方次数(2)根号内不含有分母
如果几个二次根式化成最简根式以后,被开方式相同,那么这几个二次根式叫做同类根式
23二次根式的运算
24无理方程
根号里含有未知数的方程叫做无理方程
第3篇:二次根式九年级数学知识点
1.二次根式:一般地,式子叫做二次根式.
注意:(1)若这个条件不成立,则不是二次根式;
(2)是一个重要的非负数,即;0.
2.重要公式:(1),(2)
3.积的算术平方根:
积的算术平方根等于积中各因式的算术平方根的积;
4.二次根式的乘法法则:.
5.二次根式比较大小的方法:
(1)利用近似值比大小;
(2)把二次根式的系数移入二次根号内,然后比大小;
(3)分别平方,然后比大小.
6.商的算术平方根:,
商的算术平方根等于被除式的算术平方根除以除式的算术平方根.
7.二次根式的除法法则:
分母有理化的方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式.
8.最简二次根式:
(1)满足下列两个条件的二次根式,叫做最简二次根式,
①被开方数的因数是整数,因式是整式,
②被开方数中不含能开的尽的因数或因式;
(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母;
(3)化简二次根式时,往往需要把被开方数先分解因数或分解因式;
(4)二次根式计算的最后结果必须化为最简二次根式.
10.同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式.
12.二次根式的混合运算:
(1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用;
(2)二次根式的运算一般要先把二次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等.